metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Akira Onoda, Taka-aki Okamura, Hitoshi Yamamoto and Norikazu Ueyama*

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: ueyama@chem.sci.osaka-u.ac.jp

Key indicators

Single-crystal X-ray study T = 200 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.028 wR factor = 0.083Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[triaquabis(2,6-diacetamidobenzoato)terbium(III)]-*µ*-2,6-diacetamidobenzoato] monohydrate]

The title compound, $\{[Tb(C_{11}H_{11}N_2O_4)_3(H_2O)_3] \cdot H_2O\}_n$, has a Tb ion coordinated by bulky benzoate ligands. The Tb ion coordination sphere is occupied by nine O atoms, five from benzoate groups, three from water molecules and one from an amide carbonyl group of a neighboring ligand. Five amide NH groups of the three ligands are involved in intramolecular N- $H \cdot \cdot \cdot O$ hydrogen bonds.

Comment

Hydrogen bonds to metal-coordinating atoms are frequently found in the active sites of metalloproteins and we have focused on the roles of the conserved N-H. O hydrogen bonds to carboxylate groups and the relationship with their binding properties (Ueyama et al., 1998, 1999, 2001; Yamada et al., 1998; Onoda et al., 2001; Onoda, Yamada, Okamura, Yamamoto & Ueyama, 2002; Onoda, Yamada, Okamura, Doi et al., 2002; Onoda, Yamada, Takeda et al., 2004; Onoda, Yamada, Nakayama et al., 2004; Takahashi et al., 2004). We have reported Ca^{II} and Tb^{III} complexes with benzoate ligands having bulky amide substituents in the ortho positions, viz. 2,6-(^tBuCONH)₂C₆H₃CO₂H. This ligand has stable intramolecular six-membered N-H···O hydrogen bonds, forming sixmembered rings; it also prevents the formation of polymeric complexes as a result of steric congestion. Thus, we have obtained mononuclear homoleptic Ca^{II} and Tb^{III} complexes with three or four carboxylate ligands. We have studied in detail the effect of the $N-H \cdot \cdot \cdot O$ hydrogen bonds on the Ca^{II} ion binding with the carboxylate in a solution using Tb^{III} ions as fluorescence probes in aqueous solution, using the less bulky 2,6-(MeCONH)₂C₆H₃CO₂H.

We report here the crystal structure of a Tb^{III} complex with the 2,6-(MeCONH)₂C₆H₃CO₂H ligand. The title compound, (I) (Fig. 1), has a Tb^{III} ion surrounded by nine O atoms, five from benzoate groups, three from water molecules and one

 \bigcirc 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 20 May 2004 Accepted 12 July 2004 Online 31 July 2004

Figure 1

View of the title complex, showing the labeling of selected non-H atoms and 30% probability displacement ellipsoids.

from an amide carbonyl group of a neighboring ligand (Table1). Two benzoate ligands coordinate Tb in a chelate bidentate fashion and the third benzoate ligand coordinates in a monodentate fashion. The uncoordinated carboxylate O atom is hydrogen-bonded to the water ligated to the Tb^{III} ion. Five amide NH groups of the three ligands are involved in intramolecular N-H···O hydrogen bonds, forming sixmembered rings (Table 2). The amide N5-H5 group, which is free from involvement in an intramolecular N-H···O hydrogen bond, interacts with the neighboring amide carbonyl O2 atom. The amide C=O5 group forms intermolecular hydrogen bonds with atoms O41 and O43.

Experimental

The synthesis of the title compound has been reported previously (Onoda, Yamada, Okamura, Doi et al., 2002). Crystals were obtained by recrystallization from hot acetonitrile.

Crystal data

$[1b(C_{11}H_{11}N_2O_4)_3(H_2O)_3] \cdot H_2O$	$D_x = 1.662 \text{ Mg m}^{-3}$
$M_r = 936.64$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from
a = 9.4505 (2) Å	reflections
b = 28.9468 (8) Å	$\theta = 1.5 - 27.5^{\circ}$
c = 13.7255 (2) Å	$\mu = 1.97 \text{ mm}^{-1}$
$\beta = 94.608 \ (1)^{\circ}$	T = 200 K
$V = 3742.63 (14) \text{ Å}^3$	Block, colorless
Z = 4	$0.20 \times 0.20 \times 0.20$ r
Data collection	
Rigaku R-AXIS RAPID Imaging Plate diffractometer ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.562, T_{max} = 0.675$ 32750 measured reflections	8325 independent re 7077 reflections with $R_{int} = 0.053$ $\theta_{max} = 27.5^{\circ}$ $h = -10 \rightarrow 12$ $k = -37 \rightarrow 37$ $l = -17 \rightarrow 17$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.083$ S = 1.168325 reflections 505 parameters

m 31087 mm

eflections h $I > 2\sigma(I)$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0479P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ _3 $\Delta \rho_{\rm max} = 0.71 \text{ e Å}$ $\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$

Table 1			
Selected	bond	distances	(Å).

Tb-O12	2.373 (2)	Tb-O21	2.421 (2)
Tb-O43	2.380 (2)	Tb-O31	2.474 (2)
Tb-O41	2.381 (2)	Tb-O32	2.520 (2)
Tb-O42	2.416 (2)	Tb-O22	2.569 (2)
Tb-O6 ⁱ	2.420 (2)		

Symmetry code: (i) 1 + x, y, z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O11	0.86	1.85	2.557 (3)	138
$N2 - H2 \cdot \cdot \cdot O12$	0.86	1.90	2.602 (3)	138
N3−H3···O21	0.86	1.99	2.650 (3)	133
$N4 - H4 \cdots O22$	0.86	1.98	2.674 (3)	137
$N5-H5\cdots O2^{ii}$	0.86	1.98	2.831 (3)	172
N6-H6···O32	0.86	1.95	2.669 (3)	141
O41−H34···O5	0.82	2.02	2.822 (3)	164
O41−H35···O44 ⁱⁱⁱ	0.93	1.73	2.646 (3)	171
$O42 - H36 \cdots O4^{iv}$	0.94	1.89	2.798 (3)	164
O42−H37···O11	0.93	1.79	2.663 (3)	157
O43−H39···O3 ⁱ	0.90	1.90	2.796 (3)	170
O43−H38···O5 ⁱⁱ	0.88	2.02	2.888 (2)	174
O44−H40···O1	0.91	1.85	2.722 (4)	160

Symmetry codes: (i) 1 + x, y, z; (ii) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) 2 - x, -y, 2 - z; (iv) 1 - x, -y, 1 - z.

The water H atoms were located in a difference Fourier map and included in the structure-factor calculations with fixed positional and isotropic displacement parameters. The remainder of the H atoms were positioned geometrically and were treated as riding on their parent C and N atoms, with aromatic C-H distances of 0.93 Å and amide N-H distances of 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

Support of this work by JSPS Fellowships [for AO; grant 2306(1999-2002)] and Grant-in-Aid for Scientific Research on Priority Area (A) (No. 10146231) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, is gratefully acknowledged.

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.
- Onoda, A., Yamada, Y., Nakayama, Y., Takahashi, K., Adachi, H., Okamura, T., Nakamura, A., Yamamoto, H., Ueyama, N., Vyprachticky, D. & Okamoto, Y. (2004). Inorg. Chem. 43. In the press.

- Onoda, A., Yamada, Y., Okamura, T., Doi, M., Yamamoto, H. & Ueyama, N. (2002). J. Am. Chem. Soc. **124**, 1052–1059.
- Onoda, A., Yamada, Y., Okamura, T., Yamamoto, H. & Ueyama, N. (2002). *Inorg. Chem.* 41, 6038–6047.
- Onoda, A., Yamada, Y., Takeda, J., Okamura, T., Doi, M., Yamamoto, H. & Ueyama, N. (2004). Bull. Chem. Soc. Jpn, 77, 321–329.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Takahashi, K., Doi, M., Kobayashi, A., Tagushi, T., Onoda, A., Okamura, T.,

Yamamoto, H. & Ueyama, N. (2004). Chem. Lett. 33, 192-193.

- Ueyama, N., Hosoi, T., Yamada, Y., Doi, M., Okamura, T. & Nakamura, A. (1998). *Macromolecules*, **31**, 7119–7126.
- Ueyama, N., Kozuki, H., Doi, M., Yamada, Y., Takahashi, K., Onoda, A., Okamura, T. & Yamamoto, H. (2001). *Macromolecules*, **34**, 2607–2614.
- Ueyama, N., Takeda, J., Yamada, Y., Onoda, A., Okamura, A. & Nakamura, A. (1999). *Inorg. Chem.* **38**, 475–478.
- Yamada, Y., Ueyama, N., Okamura, T., Mori, Y. & Nakamura, A. (1998). *Inorg. Chim. Acta*, **275–276**, 43–51.